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Abstract The variational combination of the Hartree–
Fock (HF) with the Heitler–London (HL) methods, yiel-
ding the Hartree–Fock–Heitler–London (HF–HL) method
is analyzed for diatomic hydrides and homonuclear mole-
cules of the first and second row atoms. This recent quantum
chemistry development is considered in the light of the conti-
nuous evolution of hypotheses and corresponding verifica-
tions occurring in quantum chemistry. The correlation energy
correction needed in HF and HL computations is reduced
in the HF–HL method to its dynamic component, since the
non-dynamical correlation is accounted by explicitly consi-
dering near degeneracy and state crossing. The dynamical
correlation is computed either (1) via expansion with multi-
configuration of HF and HL functions or (2) including ionic
HL structures, yielding a large fraction of the molecular extra
correlation energy or (3) using the Coulomb hole density
functional. With the latter the computed total and binding
energies for all internuclear separations are in excellent agree-
ment with laboratory data.
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0 Foreword

The molecular orbital (MO) and the Heitler–London (HL)
approximations constitute the two pillars on which the deve-
lopment and construction of today quantum chemistry is
based. The late Prof. Serafin Fraga was well aware that both
methods are valid tools to explain molecular binding. About
one half century ago, in his paper with Mulliken, Serafin
Fraga [1] did analyze the Heitler–London approach conside-
ring the role of the coulomb energy and advocating a modified
Heitler–London as to include a promotional energy contri-
bution term, approximately the equivalent of today polariza-
tion function effects in the HF model. In their conclusions,
Fraga and Mulliken, realizing the algebraic and numerical
complexity of their suggestion, returned on a previous work
by Mulliken [2] by proposing a pragmatic and phenomeno-
logical solution, by them candidly designated as a “magic
formula”, namely, an approach, we today dignify as “semi-
empirical approach”.

In this paper, we return on Fraga’s steps with an analysis of
the two basic methods, but realizing the unique contribution
of the two different physical hypotheses at different inter-
nuclear distances, we have decided to keep them both and
simply merge the two models into one. Indeed, the underli-
ning assumption of the HF method is that molecules are built
by nuclei and electrons, whereas the HL method assumes
that molecules are built by combining atoms. Clearly, both
assumptions are valid to a first approximation; HF is the
model of choice from the united atom to equilibrium sepa-
rations, but HL is obviously the correct model at molecu-
lar dissociation. By construction the electrons, the objects
of motion represented with the Schrödinger equation, either
envelop the entire nuclear system or specific nuclei of the
atoms constituting the molecule; in both cases the constraints
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and the limitations imposed by the Born–Oppenheimer [3]
approximation are maintained.

We all know that the HF approximation for molecular
computations is indelibly related to the research carried out
for three to four decades at the Laboratory of Molecular
Structure and Spectra, LMSS, Department of Physics, at the
University of Chicago, Chicago, IL, USA.

In the very late 1950 and early 1960, Serafin Fraga was
one among the theoreticians at LMSS; others among the visi-
ting scientists and the students were W. Kołos, R. A. Sack,
B. J. Ransil, S. Huzinaga, P. E. Phillipson, R. Moccia, one
of us (E.C.) and among the young students we recall A. W.
Weiss, A. D. Mc Lean, M. Yoshimine and—but later—G.
Malli, P. Bagus, G. C. Lie and B. Liu. The laboratory expe-
rimental researchers, the spectroscopists, also had an office
in the Ryerson building at the University, but downstairs,
near the instruments; the theoreticians, were crowded ups-
tairs in the third floor with Mulliken, Roothaan and the LMSS
secretary.

It was a time of creative excitement, hard work, sharing of
ideas, good relations and friendship. It was clear to all of us
at LMSS that we were creating the base for a new chemistry
with a new tool, the computer, but it was not evident how
to improve on the LCAO—MO approximation, even in the
new form proposed by Roothaan, the restricted Hartree–Fock
approach. Eventually, the decision favored the abandoning of
the CI approach in favor of extended MC–SCF expansions.

At the time there were no computers in the Chicago area;
therefore, very frequently one would fly to Dayton in Ohio
to use the computational facilities at the Wright Field Deve-
lopment Center, a USA Air Force base. The nearly weekly
trips, often with overnight stay in Dayton (on a rather limi-
ted budget from the University of Chicago) did reinforce the
already strong comradeship spirit.

Most of the postdoctoral did arrive to Chicago from dif-
ferent Countries and the today nearly universal use of the
English language was at that time a restricted commodity;
indeed, many among us learned English on quantum che-
mistry books and journals, with limited attention to conver-
sational English.

Dr. A. D. McLean reminded us of the following anecdote.
Serafin did not show up to the laboratory as expected on
the next day after his arrival from Spain (an early day in
the week); therefore, the LMSS people were concerned, and
contacted him by telephone. Serafin answer was very slow
in coming and limited to the sentence “I will be in Monday”:
in the hotel Serafin was busy attempting to learn English in
less than 1 week and practicing conversation by listening as
many Western movies as he could. The following Monday
Serafin finally did show up in the laboratory, his English with
a cowboy flavor. According to McLean, Andy Weiss spoke
too fast for Serafin, who would employ Kołos as a translator
from Andy’s English to Kołos English to Serafin.

The LMSS researchers had well understood the decisive
influence of computer technology in the development of theo-
retical chemistry. This essential connection today is taken
for granted, not at that time; we recall that many scientists
did look at what today is called “computational chemistry”
as a childish enthusiasm, likely of no lasting relevance to
chemistry. Equally underestimated by today scientists is the
large effort from a minority determined to secure computer
hardware and software capable of performing scientific com-
putations rather than only data analyses, graphics and other
market or business-oriented activities. It must be admitted
in this contest that the battle for scientific computer develop-
ment most likely would have been lost or delayed without the
determining worldwide support from departments of defense.
It is indicative in this regard that LMSS scientists would fly to
the Wright Field Development Center, not to some scientific
center.

Eventually, each visitor departed from LMSS along dif-
ferent roads both geographically and in science. I (E.C.) recall
Serafin’s letters letting me know about his difficult adapta-
tion to the winters in Alberta, Canada, the several encounters
at international meetings, where Gina and I had the pleasure
to see again Serafin and Ester; till the last time in Caceres, in
his beloved Spain.

To the memory of Prof. Dr. Serafin Fraga, our good friend,
a scientist with a deep and personal vision and a man of great
humanity, we dedicate this work.

1 Introduction

1.1 A bit of history

It is well known that, at the beginning of quantum chemistry,
two approaches were predominant in the attempt to explain,
with quantum theory, the forces responsible for holding
atoms together in a molecule. These were the linear com-
bination of atomic orbitals–molecular orbitals [4–6] (LCAO–
MO) and the Heitler–London [7] (HL) approximations. These
approaches represent two different approximations to the
exact one-particle model and did in time evolve into the ana-
lytical Hartree–Fock (HF) approximation [8,9] (at the time
the HF was a most promising and well tested method for ato-
mic systems [10–12]) and the Valence Bond (VB) approxi-
mation [13–18].

Since the LCAO–MO and the HL provide —in general—
qualitatively reasonable, but sometimes also notably poor
approximations, the last five decades have witnessed a strong
effort aimed at providing more accurate quantum mechanical
solutions [19,20] often with the two original approximations
as a starting point. Among the early improvements we recall
the SCF technique adapted to more than one configuration,
the multi-configuration SCF approximation [12] eventually
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leading to the complete multi-configuration SCF approxima-
tion [21] and later to the CASSCF computer codes [22,23].
These methods can be considered as “improved technologi-
cal approaches” relative to the configuration interaction (CI)
method [24].

A general way to correct HF-type functions was proposed
in the early 1930 by Wigner [25], with a functional of the
electronic density parameterized from solutions of the free
electron model. Wigner considered the correlation energy as
a correction to be estimated once the HF-type density was
available. This view was followed and extended particularly
in Europe as documented in Gombas volumes [26,27] and
papers [28,29].

Later, in the early days of the computer development of
quantum chemistry, Clementi [30] modified the Coulomb
energy in the HF-self consistent field with a correction term
applied directly to the HF–SCF model. Since the HF method
allows two electrons with anti-parallel spins to come too near
one to the other, the resulting HF repulsion is too large, thus
the total energy is too small by an amount called by Wigner
[25] “correlation energy”. Clementi’s correction term essen-
tially introduced a Coulomb hole around two interacting
electrons, modifying Wigner main idea. This modified HF
solution is the “Clementi orbital and determinant”. The cor-
rection and extensive applications to atomic HF functions
were reported in a review paper [30], at the conclusion of
a massive tabulation of atomic HF wavefunctions [31]. The
correlation energy for neutral atoms ground and excited states
of the lowest configuration and for the corresponding iso-
electronic series was thus analyzed and quantitatively explai-
ned [32–34] for the first time. Later, Clementi alternated the
use of the Coulomb hole with Wigner–Gombas-type density
functionals. To extend the concept to molecular systems it
was first of all necessary to write a new and general molecular
computer code [35,36], several times improved and adapted
to computer hardware evolution. This post-HF approach is
indicated in this work as the “density functional approxima-
tion” (DFA) not to be confused with density functional theory
(DFT) (see below). Indeed, the notation “Wigner-type den-
sity functional”, used by Clementi in the past 40 years seems
to have not conveyed the idea of the difference between DFA
and DFT.

Soon thereafter, Hohenberg and Kohn, also in California,
published a theorem [37] proposing a unique relation bet-
ween exact electronic density and exact wavefunctions for
non-degenerate states (thus a theorem for semi-classical
systems), without, however, providing any algorithm to link
density and energy.

We recall that the Thomas–Fermi [38,39] approximation
for atomic systems, based on the Poisson equation, is also
density related; however, this approximation was disregarded
in the early development of quantum chemistry, due to the
opinion that it could not lead to any molecular binding. In the

late 1950s there was a renew interest [40] and today we know
that about 50% of the molecular binding can be obtained with
classical considerations without inclusion of the exchange
term [41].

The idea to introduce correlation via modifications of the
HF interactions, e.g., with the Coulomb hole [30] or with
Wigner-type density functionals [25–29], is also central in
the Slater‘s proposal to extend the role of the HF exchange
energy, leading eventually to the “xα” approximation [42].
Recall that Slater had already suggested how to simplify the
computation of the exchange energy [43] particularly cum-
bersome in solid state computations; this suggestion did lead
to Hermann and Skillman tables of atomic functions [44].
Thus DFA are recurring concepts from mid-1930 to mid-
1960.

The Thomas–Fermi model was assumed as a starting point
in the paper by Kohn and Sham [45] which, however, pre-
sented two very distinct avenues. The first one is a typical
DFA approach, which restates the concepts provided by the
Coulomb hole [30] computations and by the “xα” approxima-
tion [42,44]; the resulting orbitals are the so-called
Kohn–Sham orbitals, and the approximation did eventually
lead —after a number of years– to a most popular type
of molecular computations, the so-called Kohn–Sham DFT
molecular approximation, popularized for example by Parr
and Yang volume [46] but mostly by the availability of easy
to use computer codes [47,48]. We are of the opinion that
“Kohn–Sham DFA” and not Kohn–Sham DFT is the correct
label for this approach. The second avenue [45] proposes the
Hohenberg and Kohn theorem as the base for a new way
to obtain exact energies, from exact densities, conditioned,
however, to the availability of an exact exchange expression;
till now there is no such expression. Indeed, the electronic
density, being spin independent, is a questionable starting
point for defining a spin dependent exchange energy. This
second avenue is designated DFT.

We stress the difference of the DFT from the DFA propo-
sals: in the DFA approach explicit semi-empirical corrections
are inserted into the traditional HF computations, maintai-
ned as the theoretical foundation; in the DFT approach, the
HF approximation is explicitly eliminated in favor of a new
method requiring, however, a “new exchange” formulation,
based on the spin-independent electronic density. Particu-
larly critical for the DFT avenue is the computation of exci-
ted states, since these require vector coupling coefficients,
which, however, assume the HF wave-function framework.
The two view points are not compatible, due to the opposing
starting assumptions.

Parallel to these developments based on the variational
method, the introduction of perturbation methods in 1934
with Møller and Plesset [49] opened new avenues, leading
eventually to the coupled cluster methods [50,51] comple-
menting the variational approaches;more recently we have
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witnessed a merging of these approaches, for example, the
perturbation theory has been utilized in CASSCF computa-
tions yielding the CASPT2 method [52].

However, it does not seem incorrect to state that none of
the above methods is adequate to provide an ab initio com-
putationally efficient solution of the Schrödinger equation.
Indeed, it does not surprise that in the meantime “magic for-
mulae” had become very popular among pragmatic chemists,
a consequence of the realization that quantum chemical com-
putations can provide predictions and explanations in many
facets of chemistry not only for small molecules (two to ten
atoms, the ab initio chemistry area) but also for larger mole-
cular systems with up to hundred(s) of atoms. Availability
of easy to use computer codes [47,48], and the computeri-
zation of sciences are two additional determining factors for
the diffusion of semi-empirical methods. For details we refer
to relatively recent publications [19,20] presenting different
view points on the present status [19] and the evolution [20]
of quantum chemistry, respectively.

Presently, there is still some debate on the ab initio ver-
sus semi-empirical nature of some of the above algorithms.
Actually, the answer is trivial to researchers able to read
a computer code: indeed, if semi-empirical parameters or
approximations are used to compute the energy of the system
in examination, then the method and the algorithm is semi-
empirical. (Note, however, that often the users of quantum
chemical computer codes do not to care about the underli-
ning method of the selected code, being interested mainly in
the computed results).

We recall a few among of the many semi-empirical ave-
nues; we start by mentioning the extension of Hückel-type
Hamiltonians [53] and the many applications of the molecu-
lar mechanics approximation [54]; other methods, like diffe-
rential overlap techniques [55], appear today to be more and
more obsolete.

Among the post-HF semi-empirical models we recall
modifications of Clementi’s Coulomb hole [30] leading to
new formulations for atomic [56,57] and molecular orbitals
[58,59] in the HF frame, or to extensions for more than a
single HF configuration [60,61], or for spinors [62].

Another semi-empirical post-HF application, even if today
somewhat in decline, is the “xα” approximation [42]. Finally,
in this partial list of semi-empirical approximations, we must
add, as previously stated, the today very popular Kohn–Sham
DFA semi-empirical approximations [45–48] often (unfortu-
nately) presented as ab initio computation.

1.2 A justification

We hasten to call to mind that today there are different and
appealing alternatives [19] to the approaches mentioned
above and the methodological effort continues for the appli-
cability of quantum chemical methods to very large and

complex systems with increasingly reliable methods. Mole-
cular dynamics (MD) is by now more and more a chapter
of quantum chemistry; it provides the possibility to deal
with very large chemical systems, and presents the enormous
advantage to deal explicitly with time, temperature and ther-
modynamics, the heart of chemistry.

From a historical point of view, the pragmatic rush to
develop new techniques and methods has understandably left
numerous gaps. In addition, in the early days the enthusiasm
and a highly competitive atmosphere in the new field of com-
putational chemistry highlighted the differences rather than
the complementary nature of the two traditional and compe-
ting quantum chemical approaches, HF and VB. Today, we
can afford a more relaxed attitude, and continue on Herzberg’s
trail [6], where the study of the ground state binding energy
and of molecular spectra is explained with reference to both
the MO and the HL methods.

We stress that Herzberg classical analysis, being prior to
the advent of computer programs in computational chemistry,
is nevertheless capable of providing very instructive explana-
tions on binding energy, both for ground and excited states,
based on relatively few electronic configurations or on a few
electron pairs. This old, albeit qualitative approach appears to
be in contrast to today somewhat diffuse mentality in com-
putational chemistry, indifferent to its inability to provide
physical and chemical explanations and bent on promoting
computer intensive methods, unfortunately often valid only
for small molecular systems. Recall that full CI and MC–SCF
were referred in the early 1960s as “brute force methods”,
because of their nearly total reliance on the ever increasing
power of computational devices.

Even at the risk of overextend this already lengthy section,
we cannot refrain from reporting a few lines from C. A. Coul-
son’s closing address [63] at a quantum chemistry miles-
tone, the 1960 Boulder Colorado meeting, concerning what
laboratory chemists likely want from quantum chemists, for
example in answering why the H–F bond is so strong, when
the F–F bond is so weak “ . . . any explanation “why” must be
given in terms of concepts which are regarded adequate and
suitable. So the explanation must not be that the electronic
computer shows that D (H–F) � D (F–F), since this is not an
explanation at all, but merely a confirmation of experiment.
Any acceptable explanation must be in terms of repulsion
between non-bonding electrons, dispersion force, between
the atomic core, hybridization, and ionic character. It does
not matter that in the last resort none of thee concepts can be
made rigorous”.

1.3 Back to the main task

In a few situations, the two quantum chemical models, HF
and HL, fail to provide a theory capable of predicting (even
qualitatively) the forces responsible for holding together
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atoms in a molecule. It follows that neither one of the two
models can be chosen as a general zero-order approximation
for quantum chemistry, namely, a “reference function” which
qualitatively approximates laboratory data consistently and
with equal accuracy at any internuclear separation.

Parenthetically we note, following Hirschfelder [64], that
“molecular forces” can not be “explained with” but only “cor-
related to” partitioning of the electronic density; any explana-
tion of “molecular forces” requires specific theoretical and
computational approaches dealing with analyses of forces;
for example, those proposed long ago by Hellmann [65] and
Feynman [66] and implemented for example in the recent
work by Fernandez Rico et al. [67].

This paper makes use of a recent preliminary proposal [68]
on the Hartree–Fock–Heitler–London (HF–HL) method and
of computations on diatomic hydride [69,70] and homopolar
[71] molecules.

2 The HF–HL first step

The HF–HL algorithm is formally proposed as a three-step
process with increasing accuracy at each successive step;
alternatively, the HF–HL method can be considered as a
model with two physical approximation levels, where we
account for non-dynamical correlation (computationally, it
corresponds to the “first HF–HL” step) and the post-HF–HL
model, where we account also for the dynamical correla-
tion (computationally, this is the “second” and “third HF–HL
step”).

2.1 The first HF–HL step

In the first step, we variationally combine the HF and the
HL functions, the latter being built with HF atoms [68,69]
thus yielding by construction correct dissociation products.
The HF and HL functions are improved, via short MC expan-
sions, to introduce near-degeneracy correlation energy (see
Sect. 3) and avoided state crossing, whenever the state in
consideration results from an avoided potential energy curve
crossing. In this way, the HF–HL function accounts for the
non-dynamical correlation energy. The HF and the HL func-
tions can be further improved by considering additional
expansion terms, either MC–HF or MC–HL (for example,
the so-called “ionic structures”), but, since these extensions
bring about dynamical correlation, we defer its consideration
to post HF–HL computations (see Sect. 5).

Formally, we start by defining with obvious notation �HF,
and the �HL functions given in Eqs. 1a and 2a, respectively:

�HF = det(�1, . . . , �i, . . . , �n) (1a)

�HL = �kdet(ϕ1k, .., ϕik, . . . , ϕmk) (2a)

Above, �i refers to i th HF molecular orbital and ϕlk to the lth
atomic orbital of the kth determinant in the HL function. Note
that the HL functions are constructed to satisfy the correct
spin coupling constrains [72].

When at dissociation the atoms in the molecule are in a
state with near-degeneracy (e.g., 2s–2p for second row atoms)
and/or when there is avoided crossing, then in Eqs. 1a and
2a the �HF and the �HL are replaced with very short MC
expansions, designated �HF and �HL accounting for near-
degeneracy and avoided crossing, leading to

�HF = �tat�HF(t) = �tat[det(�1, . . . , �i, . . . , �n)t]
(1b)

�HL = �tbt�HL(t) = �tbt�k[det(ϕ1k, .., ϕik, . . . , ϕmk)]t

(2b)

where the at and bt are the weights of the MC expansions.
The HF–HL wavefunction �HF−HL is obtained by deter-

mining variationally the linear combination

�HF−HL = �tat�HF(t) + �tbt�HL(t) (3)

In Sect. 3 we shall introduce a specific notation to characte-
rize the length and the specific terms in the expansions for
�HF and for �HL.

In Eq. 3 the at and bt coefficients are obtained variationally
by solving the equation

(H − SE)C = 0 (4)

with H and S the interaction super-matrices containing the
Hamiltonian and the overlap matrix elements, respectively.
The �i orbitals of �HF are linear combination of a basis set
of Gaussian functions and the same basis set is also used to
expand the orbital ϕlk of �HL. We recall that the �i orbitals
form an orthogonal set, whereas the ϕlk orbitals can be non-
orthogonal. For the latter case, following Löwdin [73] the
interaction between two determinants, da and db, is given
by:

〈da |H|db〉 =
∑

ij
hijS

(i,j)

+
∑

i<k,j<l
[〈ij|kl〉 − 〈il|kj〉]S(i,k,j,l) (5)

where the indices i and k refer to the occupied orbitals of da

and j and l to those of db; S(i,j) and S(i,k,j,l) are the first- and
second-order cofactors of the overlap matrix S, construc-
ted with the occupied orbitals of da and db. The cofactors
are computed with the algorithm proposed in [74] adapting
routines from the public domain Linpack library [75]. The
formulation of second and the third HF–HL steps, namely,
the post-HF–HL method is explained in Sect. 5.
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3 Dynamical and non-dynamical correlation energy
and the HF–HL model

3.1 Decomposition of correlation effects

The standard definition of the correlation energy [76] relates
specifically to the HF method. Therefore, since we consider
also the HL and the HF–HL methods we need a more gene-
ral definition and an appropriate notation for the correlation
energy associated with the HF–HL model.

Molecules are systems of nuclei and electrons, and the cor-
relation energy can be defined with reference to an expansion
into one-, two-,. . ., many-electron energies obtained by sol-
ving the corresponding one-, two-,. . ., many-electron exact
solutions. The existing approximated solution from a given
non-relativistic model (like HF, HL, HF–HL) brings about
energy differences relative to the energies obtained (a) with
the exact one-electron non-relativistic model, difference cal-
led “non-dynamical” correlation, Ec (non-dyn), and (b) with
the exact many-electron non-relativistic model, the total cor-
relation energy, Ec. The difference between the total and the
non-dynamical correlation energy is, by definition, the dyna-
mical correlation energy, Ec(dyn). This view point follows
most naturally the HF approach.

Alternatively, particularly considering the HL approach,
we can stress the notion that molecules are composed of
atoms, and in this case the correlation energy can be bro-
ken down into two main components: one, �aεa, is the sum
of the correlation corrections for each individual atom, εa,
and the second, ηM = (Ec − �aεa), is the “molecular extra-
correlation energy” [77]. This second viewpoint is comple-
mentary to the previous one, and

Ec = �aεa + ηM (6)

is the starting point for the decomposition given in Sect. 3.3.

3.2 Non-dynamical correlation energy

The non-dynamical correlation errors in the HF model are
due to (1) neglect of near-degeneracy, (2) the constraint of
doubly orbital occupancy for molecular systems approaching
dissociation, (3) neglect of avoided curve crossing. Essen-
tially, the non-dynamical correlation corrects for gross defi-
ciencies of the HF one electron model and cannot be conside-
red a true many-body effect. Let us consider near-degeneracy.
The non-dynamical correlation has been accounted by
Hartree et al. [12] with a two term MC expansion for the
near-degenerate configurations 1s22s22pn and 1s22s02pn+2.
Later, a different approach based on perturbation methods
was proposed by Sinanoglu [78,79]. Following Hartree et al.
[12], Veillard and Clementi [80] computed with Slater-type
functions Ec(non-dyn) for the second-row atoms and ions
using an MC expansion of two configurations, the ground

state configuration 1s22s22pn and its degenerate 1s22s02pn+2.
These computations have been reproduced [69] with exten-
ded Gaussian basis, including recently the iso-electronic
series of positive ions till Z = 10 [81] ; for Be [1S], B[2P]
and C[3P] atoms the non-dynamical correlation energies are
0.04372, 0.03481, and 0.01936 hartree, respectively, in sub-
stantial agreement with the computation by Veillard and
Clementi [80], showing that relatively small amount of mixing
is sufficient to remove near-degeneracy errors in atoms.

Concerning the constraint of doubly orbital occupancy,
we recall that the HF model approaching dissociation can
become unstable leading to grossly incorrect energies. The
use of the unrestricted HF algorithm avoids this catastro-
phic behavior, but the resulting wavefunction is incorrect. An
alternative, proposed by Lie et al. [60,61] was to determine
a short MC function, ensuring proper dissociation, gaining
in addition most of the non-dynamical correlation energy.
This approach was the first computation in quantum chemis-
try using density functionals—in the DFA spirit—to correct
MC rather than HF functions. The approach is not of easy
implementation for molecules with more than two atoms and
for multiple bonds. For example, even in the ground state of
N2 ten configurations are needed to obtain correct dissocia-
tion [60,61], to be compared with only two configurations
(one from HF and one from HL) in the HF–HL model.

A third source of non-dynamical correlation is related
to the degeneracy at the crossing of states with the same
symmetry—a situation very common in excited states, but
also frequently present in ground states [6,69] as in, for
example, BeH. Note that since at the crossing of two or more
interacting states there is exact degeneracy, curve crossing
can be considered as a special type of near-degeneracy.

In the HL approximation, the non-dynamical correlation
error is due (1) to the neglect of near-degeneracy, (2) to the
constrained selection of the lowest atomic states at dissocia-
tion, and (3) to the neglect of avoided state crossing.

3.3 Model-dependent partitioning of correlation energy

We have partitioned the total molecular correlation energy
Ec into the sum of �aεa and ηM; recalling the partitioning
into dynamical and non-dynamical component

Ec = �
a
[εa(dyn) + �aεa(non-dyn)]

+ηM(dyn) + ηM(non-dyn) (7)

Since the correlation errors are model dependent, we must
distinguish Ec(HF) from Ec(HL), and write:

Ec(HF) = �aεa(HF)(non-dyn) + �aεa(HF)(dyn)

+ηM(HF)(non-dyn) + ηM(HF)(dyn) (8a)

Ec(HL) = �aεa(HL)(non-dyn) + �aεa(HL)(dyn)

+ηM(HL)(non-dyn) + ηM(HL)(dyn) (8b)
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In the HF–HL method, �aεa(non-dyn) is accounted by
the inclusion of near-degeneracy and avoided crossing, and
ηM(non-dyn) by ensuring correct dissociation with the HL
function: thus for the HF–HL model the correlation correc-
tion is reduced to

EC(HF−HL) = ηM(HF−HL)(dyn) + �aεa(HF−HL)(dyn)

(9)

The terms in Eq. 9 can be decomposed with the traditional
[32,33] sub-partitioning into intra-pair, eii, and inter-pair, eij,
electron correlation. Due to chemistry interest in the binding
energy, we are particularly interested in intra- and inter-pair
electron correlation related to binding orbitals and specific
atoms in the molecule. In the Appendix we expand on this
point.

3.4 Notation

Previously [69], we have introduced definitions and a spe-
cific notation needed to ensure a coherent discussion in the
HF–HL method. We indicate as MC–HF and MC–HL multi-
configuration expansions of HF-type and HL-type functions,
respectively. When needed, we use the specific notation
HF(n), HL(m) and HF–HL(n, m) to designate MC–HF
expansions of n configurations, MC–HL expansions of m
configurations, and HF–HL function composed by the linear
combination of HF(n) and HL(m). The energies EHF(n),
EHL(m) and EHF−HL(n, m) correspond to the wave func-
tions HF(n), HL(m) and HF-HL(n, m), respectively. Equi-
valent notation is used for the computed binding energies,
Eb, and the correlation energies, Ec. To indicate a specific

electronic configuration within a given MC expansion we use
the notation HF-n, HL-m.

4 Diatomic molecules and HF–HL first step
computations

The HF–HL method—in its simplest implementation (first
step)— accounts for the non-dynamical correlation energy
and explicitly considers avoided crossing. With the simple
HF–HL model we have computed [68,69] the ground state
potential energy curves for the first and second row hydrides,
obtaining in average 80% of the experimental binding energy,
to be compared with 60 and 70% from HL and HF com-
putation, respectively (the BeH interaction is repulsive by
29 kcal/mol in HL and it contributes to the percent with a
negative value). For the homopolar diatomic molecules we
obtain 66% of the experimental binding, compared with 48%
and 32 from HF and HL computations. (F2 is repulsive in the
HF model and the same holds for B2 and F2 in the HL model).

Below, we briefly comment on the HF–HL first step com-
putations on hydrade and homopolar molecules, selecting the
H2[1�+

g ], LiH[1�+], HF[1�+], Li2[1�+
g ], N2[1�+

g ], and

F2[1�+
g ] ground states as examples for a more detailed analy-

sis, since either composed with the first or last atom of an ato-
mic period, H2[1�+

g ], LiH[1�+], HF[1�+], Li2[1�+
g ], and

F2[1�+
g ], or with a multiple bond, N2[1�+

g ]. For additional
data on the original computations, see [68–72].

In Table 1 we report for the hydride ground states the
experimental binding energy, the corresponding equilibrium
internuclear separation, exact non-relativistic energies at

Table 1 Diatomic hydrides: laboratory molecular binding energy (kcal/mol), Eb, laboratory equilibrium distance(bohr), Re, total exact non-
relativistic energy at equilibrium, ET(Re), and at dissociation, ET(R∞), atomic HF energies (hartree), EHF(limit), and EHF (this work)

Molecule E [a]
b R[a]

e ET[Re] ET[R∞] EHF [limit] EHF [this work]

H2[1�+
g ] 109.48b 1.4b −1.1744757 −1.000000 H [2S] −0.500000 −0.499999

HeH [2�+] 0.01c 7.00 −3.4037459 −3.4037243 He [1S] −2.861680 −2.861679

LiH [1�+] 58.00 3.0150 −8.070491 −7.978062 Li [2S] −7.432727 −7.432721

BeH [2�+] 49.83d 2.5371 −15.246772 −15.167363 Be [1S] −14.573023 −14.573016

BH [1�+] 84.1e 2.3289 −25.28795 −25.15393 B [2P] −24.529061 −24.529036

CH [2�] 83.9 2.1163 −38.47869 −38.34499 C [3P] −37.688619 −37.688616

NH [3�−] 80.5f 1.9582 −55.21754 −55.08925 N[4S] −54.400934 −54.400924

OH [2�] 106.6 1.8324 −75.73708 −75.5672 O [3P] −74.809398 −74.809384

HF [1�+] 141.5g 1.7325 −100.4592 −100.2337 F[2P] −99.409349 −99.409343

a Ref. [82]
b Ref. [83]
c Ref. [84]
d Ref. [85]
e Ref. [86]
f Ref. [87]
g Ref. [88]
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equilibrium and at dissociation, atomic energies at the HF
limit and computed [68,69] with Gaussian basis sets. The
basis sets we have used are extended basis sets of the
Gaussian functions with several polarization functions such
as to ensure not only HF limit atomic energies but also cor-
relation corrections. Table 2 reports equivalent data for the
homopolar molecules.

In Fig. 1 we report, for the above molecules, the ground
state potential energy curves computed with the HF, HL and
HF–HL approximations. The number of computations at dif-
ferent internuclear separations varies from 20 to 30. In gene-
ral, the HF–HL improvement over the traditional methods is
larger in the homopolar molecules than in the hydrides.

In Fig. 2 we display the gain in the computed ab initio
binding energy for the full set of hydrides (top inset) and
homopolar (bottom inset) relative to HF computations: we

Table 2 Laboratory molecular binding energy (kcal/mol), Eb, labora-
tory equilibrium distance (bohr), Re, non-relativistic energy at equili-
brium, ET(Re), and at dissociation, ET(R∞)

Molecule E [a]
b R[a]

e ET[Re] ET[R∞]
H2[1�+

g ] 109.48b 1.4b −1.1744757 −1.000000

Li2[1�+
g ] 24.67 5.051 −14.99543 −14.95612

Be2[1�+
g ] 2.40c 4.63 −29.33860 −29.33478

B2[3�−
g ] 71.14 3.0047 −49.42117 −49.30780

C2[1�+
g ] 145.86 2.348 −75.9224 −75.6900

N2[1�+
g ] 228.4 2.0743 −109.5426 −150.1348

O2[3�−
g ] 120.6 2.2819 −150.3270 −199.4682

F2[1�+
g ] 39.0 2.6682 −199.5304 −257.8766

a Ref. [82]
b Ref. [83]
c Ref. [89]

Fig. 1 Potential energy curves from first step HF, HL, and HF–HL computations for H2[1�+
g ], LiH[1�+], HF[1�+], Li2[1�+

g ], N2[1�+
g ], and

F2[1�+
g ]
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Fig. 2 Top hydride binding energies from ab initio HF and HF–HL
approximations, with and without ionic configurations, and experimen-
tal binding. Bottom same for homopolar diatomic molecules

report binding energy from HF, HF–HL without and with
inclusion of ionic structures. The gains due to inclusion of
the ionic structures are notable, bringing the agreement with
the experimental binding from 80 to 91%. These computa-
tions will be discussed below in Sect. 5.2, since the resulting
energies belong to post-HF–HL computations.

In Fig. 2 we have not reported equivalent comparison with
the HL method, since the binding energies are in average
inferior to those of the HF method. For the homopolar mole-
cules, the ionic structures thus far preliminarily considered
are limited to Li2, B2, N2, O2, and F2. Computations on the
ground state of Be2 and on the ground and excited states of
C2 are given in Ref. [71].

With Fig. 3 we complement Fig. 2 by reporting the error
in the binding energy, namely the molecular extra correlation
energy; the top insert relates to the hydrides, the bottom to
the homopolar molecules. These residual errors are due to
the neglect of a few intra-pair correlation contributions eij
discussed in Eq. 8A of the appendix (recall that eii � eij
and ejj � eij).

The binding energy gains, relative to the HF and the HL
models, are most evident and need no comment. The HF–HL,
indeed, emerges as the general zero-order approximation for
quantum chemistry, namely, the “reference function”, which

Fig. 3 Top hydride molecular extra correlation energies from the HF
and HF–HL approximations. Bottom same for homopolar diatomic
molecules

qualitatively approximates laboratory data consistently and
with equal accuracy at any internuclear separation with a
simple wavefunction. The computations with ionic struc-
tures for homopolar molecules are in progress to complete
the study, but it is clear that the ab initio HF–HL model
yields with very few configurations nearly correct binding
energies.

5 Ab initio post-HF–HL

The dynamical correlation is accounted in the post-HF–HL
method, either ab initio or semi-empirically, depending on the
molecular complexity and available computational facilities.
We are of the opinion that to lump the many and different
correlation energy effects into a single “error” is probably
an unfortunate misconception, widely accepted in past and
present quantum chemistry, and perhaps partly responsible
for the slow progress. Indeed, the use of different algorithms
to correct specific correlation effects allows a multiplicity of
correction strategies, each one specific for a given correlation
subtask.

Above, we have tackled the non-dynamical correlation
correction with success; below we shall deal with the
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dynamical correlation problem in two ways, either following
the traditional approach, namely with the use of a single algo-
rithm, or exploring the feasibility of corrections with a step
by step approach.

Within the traditional approach one corrects a given model
(HF, HL or HF–HL) either with ab initio techniques or, alter-
natively, with semi-empirical methods, for example with the
density functional approximations. In this section, we dis-
cuss two ab initio post-HF–HL algorithms. In the first (see
Sect. 5.1) we rely on MC–HF and MC–HL expansions and
therefore we are limited to relatively few electrons. The
second includes ionic structures and yields notable improve-
ments to the binding energy, as mentioned in the discussion
of Figs. 2 and 3 (see Sect. 5.2).

5.1 Ab initio post-HF–HL computations

Keeping in mind the decomposition of dynamical correla-
tion energy into two components, i.e. a molecular component
(the molecular extra correlation) and an atomic component
(the sum of dynamical correlation energy of the separated
atoms), we propose two steps, designated second and third
HF–HL steps, respectively. The correlation techniques adop-
ted in the second and third steps are adaptations of MC
expansions.

In the post-HF–HL method, the dynamical correlation cor-
rection is obtained by replacing in Eq. 1 the �HF function
with an extended MC–HF linear expansion of HF-type func-
tions, �pap�p(HF) and the �HL with an MC–HL expansion
of HL-type functions, �qbq�q(HL):

� ′
HF−HL = �pap�p(HF) + �qbq�q(HL) (10)

the p, q, indices define excited configurations of the MC
expansions and ap, bq , are the corresponding variational
expansion coefficients. The two MC expansions complement
one another and Eq. 10 constitutes the second HF–HL step.
In this step, ionic structures in �qbq�q(HL) are particularly
efficient since provide for in-out correlation (see Sect. 5.2).
Note that in a previous study [68] we have leaned that the
convergence rate for MC–HF expansion is very similar to the
convergence rate in MC–HL expansions.

The remaining dynamical correlation energy, related to
inner shell and non-bonding electrons, is computed by sol-
ving Eq. 11, the third step of the ab initio post-HF–HL
approach:

�HF–HL = �PaP�P(HF) + [�qbq�q(HL) + �r b′
r�r(HL)]

(11)

In Eq. 11 the index P replaces p of Eq. 10 to indicate a
more extended expansion. For the HL component we pro-
pose two MC–HL linear expansions, one �qbq�q (present
also in Eq. 10) with optimized atomic orbitals, the second

�r b′
r�r (generally an extended expansion) constructed by

adapting to the HL model MC–HF functions originally com-
puted, once for always, for the separated atoms. The latter
is intended to be used over and over for different molecules
in HF–HL computations containing atoms with the same Z
number and state specification, thus transferable from mole-
cule to molecule, as very preliminarily exemplified by the
HF–HL computations on the LiH and Li2 molecules [68].
For polyatomic systems the transferability of �r b′

r�r(HL) is
expected to become an important feature the larger the sys-
tem in consideration.

For a few electron systems, the dynamical correlation can
be obtained simply via very extensive CASSCF computa-
tions, namely, neglecting the MC–HL expansion and consi-
dering only expansions of CASSCF type. Computations of
this type have been restricted to simple systems, namely, H2,
HeH, LiH, and BeH yielding at equilibrium the following
accurate binding energies (in kcal/mol): for H2[1�+

g ] 109.26,

for HeH [2�+] 0.021, for LiH[1�+] 57.68 and for BeH
[2�+] 49.61. Computations for the binding energy using
Eq. 11 with both the MC–HF and MC–HL expansions yield
for H2[1�+

g ], LiH[1�+], and Li2[1�+
g ] ground state the fol-

lowing reasonable binding energies [68] (in kcal/mol) 108.56,
57.32 and 23.83, respectively, requiring only 6, 98 and 94
configurations, respectively.

5.2 Computation of ηM(HF−HL)(dyn)

Note that, generally, in ab initio computations, the aim is to
compute the total correlation error, but if this task is too com-
plex, we might be contented to account for part of the dynami-
cal correlation, particularly the molecular extra correlation,
ηM(HF−HL)(dyn), thus allowing accurate binding energy pre-
dictions.

It is known [69,90] that inclusion of ionic structures in the
HF–HL functions improves the computed binding energy;
below we consider this avenue in detail. Note that in Eq. 3
we have not included ionic structures in the HL component,
since this would have accounted for a fraction of the total
dynamical correlation, a task left to post-HF–HL computa-
tions. Incidentally, unknown to most of the quantum chemi-
cal literature, the use of ionic structures in quantum chemi-
cal computations dated back to a paper by Majorana [91] in
1931, where the celebrated Heitler London computation [7]
was improved by adding H+H− pairs with a 2pσ orbital in
the H− configuration. The ionic structures H−X+ and H+X−
for the HX hydrides considered in this work are designated
“basic ionic” structures, and at dissociation yield H− in the
1S(1s2) state and X+ and X− ions constrained to be in a
state of the lowest configuration, fulfilling Wigner–Witmer
[92] and Mulliken [93] dissociation rules, reported also in
the classical volume by Hertzberg [6].
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Table 3 Ionic HF–HL binding energy, Eb(HF–HL)i (kcal/mol), total
energy (hartree) at equilibrium, E(HF–HL)i(Re), and at dissociation,
E(HF–HL)i(R∞). Work in progress

Molecule Eb(HF–HL)i −E(HF–HL)i(Re) −E(HF–HL)i(R∞)

H2[1�+
g ] 95.42 1.15207 1.00000

LiH [1�+] 46.59 8.00699 7.93274

BeH [2�+] 45.73 15.18961 15.11673

BH [1�+] 78.10 25.18831 25.06384

CH [2�] 78.39 38.33102 38.20610

NH [3�−] 71.50 55.01548 54.90153

OH [2�] 98.11 75.46883 75.31028

HF [1�+] 136.12 100.12830 99.91138

Li2[1�+
g ] 25.48 14.90646 14.86544

B2[3�−
g ] 62.95 49.22392 49.12360

N2[1�+
g ] 213.10 109.13953 108.80184

O2[3�−
g ] 110.25 149.78905 149.61924

F2[1�+
g ] 35.70 198.87700 198.81916

Using the basis sets given in [69] for the hydrides we
have computed HF–HL functions with inclusion of the “basic
ionic” structures. The gain in the binding energy relatively
to HF–HL covalent computations is appreciable, as shown
in Figs. 2 and 3. In Table 3 we report for the hydride the
computed binding energy, Eb(HF–HL)i (in kcal/mol), the
computed total energy at equilibrium, E(HF–HL)i(Re), and
at dissociation, E(HF–HL)i(R∞) (in hartree). At the bottom
of Table 3 we have added the data for Li2, B2, N2, O2, and
F2. Some of the data reported in the table, particularly for
B2, N2, O2, are only partially optimized; work is in progress.

Let us now briefly consider the H2 molecule for which
we have added to the covalent HF–HL configuration a Majo-
rana type structure H−(2p2

σ ,1 S) − H+. The corresponding
binding energy is 100.24 kcal/mol compared with 95.42, by
considering the basic ionic structures, and 94.50 from only
the covalent configuration.

The ionic structures in the homopolar molecules yield bin-
ding energies close to the experimental values. Note, howe-
ver, that the ionic structures can contribute also to the inner
shell energy, as indicated by the Li2 binding. The computed
Li2 binding energy is somewhat larger than the experimental
value; the ionic structures can improve the energy more near
equilibrium than at dissociation.

The inclusion of ionic structures reported in this work is
likely a preliminary step for a more general analysis on the
in–out correlation, related to the atomic radial correlation
long ago considered for the first and second row atoms by
Clementi et al. [94]. We would be not surprised if an extensive
analysis will bring about 100% of the binding energy still
with relatively few ab initio HF–HL configurations.

6 Post-HF–HL via density functional approximation,
DFA

Recall that in the post-HF–HL method the dynamical correla-
tion can be introduced with a variety of alternative techniques
either ab initio or semi-empirically [95]. The extensive com-
putations by Lie et al. for diatomic homopolar molecules [61]
and hydrides [60] have clearly shown that density functio-
nal approximations applied to MC expansions (computed to
correct the HF function near dissociation), yield reasonable
binding and total energies. Note that for HF–HL functions the
correct dissociation is ensured by construction, thus available
and tested semi-empirical density functionals [25–30,56–61]
obtained within the DFA spirit can be used to deal with the
dynamical correlation. In the following, we use the Coulomb
hole, Ch, DFA approach [58,59].

The Coulomb hole corrects the HF Coulomb interaction,
which is overestimated in the HF approximation because of
the use of the same orbital for a pair of electrons. There are
different algorithms for the Coulomb hole. The specific algo-
rithm for this work is the soft Coulomb hole Ch functional
re-calibrated for molecular computations [58,81] making use
of new reliable correlation energy estimates [96].

Fig. 4 Top Coulomb–hole [HF–HL–Ch] binding energy (kcal/mol) for
hydrides compared with HF and first step HF–HL results. Bottom same
for homopolar molecules
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Fig. 5 Potential energy curves with Coulomb hole approximation from HF, HL, HF–HL computations for H2[1�+
g ], BeH[2�+], HF[1�+],

Li2[1�+
g ], N2[1�+

g ], and F2[1�+
g ] compared with first step HF–HL potential energy curves and to non-relativistic exact energies at equilibrium

and dissociation

The binding energy data obtained with the Coulomb hole
DFA are displayed in Fig. 4 for the full set of hydrides (top
inset) and homopolar molecules (bottom inset). To facilitate
comparison we have added the experimental, the HF–HL
first step and the HF binding energies. The agreement with
experimental data is excellent, considering that the entire
approach is condensed to a few ab initio configurations and
a simple DFA correction.

In Fig. 5 we report potential energy curves for selected
hydrides and homopolar molecules complementing Fig. 4.
Note the overall accuracy but also the slight shift to short
distances for HF, N2 and F2. In Refs. [70] and [71] we
report the full set of computations of the first and second row
hydrides and homopolar molecules. The H2 computed HF–

HL–Coulomb hole energies are accurate for the full range
of internuclear separations including the highly repulsive
region.

7 HF and HF–HL correlation energies

In general, to analyze the molecular binding energy we com-
pare the equilibrium geometry total molecular energy with
the sum of the ground state energies of the component atoms.
However, if we use a quantum mechanical model, since the
latter is only an approximation, we must also attempt to esti-
mate the error of the approximation. It is therefore of interest
to consider the correlation energy error in the HF and in the

123



Theor Chem Account (2007) 118:453–471 465

Fig. 6 Correlation energy from HF–HL computations compared with
neutral atom and ion correlation energies corrected for near-degeneracy.
Top inset for hydrides, bottom inset for homopolar molecules (see text)

HF–HL approximations. We know that the error has been
reduced in HF–HL computations by the introduction of ionic
configurations, the “ionic structures” in the VB language.
This consideration brings about the desirability to consider
the computed error not only for the separated neutral atoms
but also for the combination of the separated positive and
negative ions, participating to the ionic structure.

In Fig. 6 (top inset), we report for the hydrides the
dynamical correlation energy resulting from the HF–HL
computations, the sum of the dynamical correlation energies
for the neutral atoms (for hydrides it is simply the atomic
correlation for the atom X) and the sum of the dynamical
correlation energies for the positive and negative ions for-
ming the ionic structure.

We note that, since the HF–HL has accounted for the non-
dynamical correlation, also the atomic and ionic data must
be equally corrected by subtracting from the total correlation
energy the non-dynamical component. Further, we note that
the correlation energy for the ionic pair H+X− coincides with
the correlation energy of X−, whereas the correlation energy
for the pair H−X+ is the sum of the correlation energy for
H− (0.03951, hartree) and for X+.

The data in the top inset of Fig. 6 show that the three sets
of correlation energies are, as expected, increasing with Z,
following the pattern of the atomic correlation energies. The

Fig. 7 Hydride correlation energy: atomic correlation, with and
without near-degeneracy, compared with molecular HF and HF–HL
correlations at the united atom, equilibrium and near dissociation (see
text)

latter are often very close (non distinguishable in the graph),
for example and as expected, for the He atom the atomic,
the negative ion and ionic sum He+(2S; 1s1) + H−(1S; 1s2)

have essentially equal correlation energy, but this is also the
case, due to near degeneracy, for Li(2S; 1s22s1) compared
to Li−(1S; 1s22s2), and for B+(1S; 1s22s2) + H−(1S; 1s2)

compared to B(2P; 1s22s22p1) and, equivalently for carbon
and nitrogen. The close values of the negative ion (X− +H+)
with the molecular correlations for the C, N, O and F atoms
and the close values for the ionic sum (H− + X+) with the
molecular correlation for Li, Be and B bring to mind the
electro-negativity scale. Note in this regard the equidistance
of the molecular correlation value from the negative and
positive ionic correlations for the C atom. For the homo-
polar molecules (bottom inset) the diagrams are very dif-
ferent, with the molecular correlation larger than the ionic
for F2, O2, N2, C2, B2, Li2, but not for Be2 and H2.

In Fig. 7 we analyze in detail the correlation energy of the
diatomic hydrides HX. These molecules provide a unique
example where the correlation energy of HX at the united
atom is equal to the correlation of HX′ at dissociation for
Z(X ′) = 1 + Z(X). In this way, by considering the hydrides
from H–H to H–F, we can analyze the smooth correlation
energy variations in a system of electrons increasing from 2
to 10.

To achieve this, we report in the ordinate the Ec(n) values
and in the abscissa the number of the electrons n, either for the
atom X ′ or for the hydride HX. In addition, we attribute to the
abscissa a dual role, representing also internuclear distances.
For a given HX(n) hydride, Ec(n) varies from the internu-
clear separation with R(HX)=0 bohr, plotted at the value n
on the abscissa, to R(HX)=10 bohr made to correspond to
(n − 1) on the abscissa. Alternatively stated, each interval, n
to n − 1, represents also the scaled internuclear separations
from R(HX)=0 to R(HX)=10 bohr, the latter corresponding
essentially to dissociation.
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In Fig. 7 we plot the total HF atomic correlation ener-
gies without (full large bullet) and with (large circle) near-
degeneracy considerations. In addition, for the hydrides we
report the correlation energies Ec(HF) connected by a dashed
line at the united atom, at equilibrium (small bullet) and at
dissociation (small bullet), the total Ec(HF−HL) (square marks
connected by a solid line) and the dynamical Ec(HF−HL)

(triangle marks connected by a solid line). Thus, the HF
molecular correlation at different internuclear separations
is represented by the dashed pattern, whereas the HF–HL
molecular correlation at different internuclear separations is
represented by the full line patterns, one with inclusion of
near degeneracy, the other (upper) without. The atomic cor-
relation energy value for the atom with Z = n is equal to the
correlation energy of HX(n) at the united atom, R(HX)=0,
both in the HF–HL and HF approximations. In addition, the
atomic correlation energy value for the atom with Z = (n−1)

corresponds to the correlation energy of HX(n) at dissocia-
tion, R(HX)=∞ in the HF–HL approximation, but not for the
HF approximation, which breaks down approaching disso-
ciation (exception made for BeH). The HF correlation energy
increases sharply concomitant with the HF model break-
down; in the graph we have reported the HF correlation at the
united atom, at the equilibrium internuclear distance and at
R(HX)=10 bohr. The HF–HL correlation energy is reported
at the united atom, at the equilibrium internuclear distance, at
R(HX) = 3 × Re and at R(HX)=10 bohr. Note that at about
R(HX) = 3× Re the HF–HL correlation is essentially equal
to its value at dissociation.

From the figure it is evident that the atomic correlation
energy is the dominant component of the hydrides total mole-
cular correlation, exception made for those hydrides with
very few electrons. Note that the difference in spin multipli-
city, comparing the HX molecule and the X atom for n = 6
(3P and 1�) and n = 7 (4S and 2π ), appears to be rather
unimportant, at least for the energy scale of the figure. The
role of the molecular extra correlation in molecular binding is
evident, but at the same time the overall graph shows that the
HX systems are essentially perturbed atoms, especially for
large values of n (this observation follows also from the data
in Fig. 5). Finally, the graph clearly points out that the HF
representation becomes physically meaningless shortly after
equilibrium (approximately after R(HX) = 2×Re)up to dis-
sociation, whereas the HF–HL representation is realistic from
the united atom to dissociation. The HF–HL model emerges
as the model of preference at any internuclear distance thus
it is the “reference function” for molecular systems.

8 Genealogy of the HF–HL method

There are—by now—many approaches in quantum chemis-
try, and therefore for a new method it is not a trivial task to

Fig. 8 Genealogy of the HF–HL method in the context of related ato-
mic and molecular quantum mechanical models

draw the genealogical tree, an occasion to recognize goals
and also eventual drawbacks.

In Fig. 8 we propose a genealogical tree for the HF–HL
method in a simplified form. Each method has it own genealo-
gical tree, and a full representation of all the methods would
bring about not a single tree but . . . a forest. Recognizing
that the physical length of the printed page limits the number
of entries, we beg the indulgence of the reader for eventual
omissions.

At the top we list few of the starting seminal proposals
relevant to the HF–HL method; this first line needs no com-
ment. It remind us, however, that very little is really new
—in a rigorous sense—in today computational chemistry:
the new concepts date around the early 1930s, the computer
implementations start (and often end) in the 1960s, with—
all in all—modest improvements, often performed to keep up
with the computer industry progress. Note that the academic
recognition of pioneering ideas has been and is, all in all,
uneven.

We are interested in the HF–HL method, given on the
bottom of the figure, thus we cover the time interval from
the 1920s to the first few years of the twenty first century.
The HF–HL method is clearly linked both to the HL and to
the Roothaan RHF roots. This leaves out techniques to deal
with the correlation effects. The non-dynamical correlation
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of the HF–HL “first step” brings about a link to the MC–HF
technique on the first line of the tree. The use of DFA, the
coulomb hole in particular, leads to a link to DFA.

The HF–HL approach is intended not only for compu-
tations of ground state molecular functions and energies at
equilibrium but also for excited states, and at any internuclear
separation both for small and for large molecular systems.
Recall that a short cut to computationally intensive (Hylle-
raas, CI, MC–SCF, MP2 and—we add—today CASSCF and
coupled clusters computations) was proposed by Wigner [25]
when the dynamical correlation error was approximately cor-
rected with a functional of the electronic density. The mes-
sage was “the HF techniques is a valid starting point—over
95% of the exact non relativistic energy—which can easily
lead to a full agreement with the laboratory data simply by
using functionals of the electronic HF density”. The obvious
corollary is that the above statement is a fortiori true if the
HF function is replaced by a better (but formally related)
wavefunction.

Recall that Wigner, who introduced and defined for first
the term “correlation energy”, named the approach “statis-
tical approximation”, since based on the probabilistic inter-
pretation of the electronic density, an interpretation not fully
accepted in the physicists community of the early 1930. His
effort was followed not only in Europe [26–29] but also in
USA for example by Pines [97,98], Gell-Mann [99], and
Bruekner [100]. In today theoretical and computational che-
mistry there seems to be only a very weak trace of the above
literature.

In the period of 1962–1963 in California, one of us (E.C.)
inspired by Wigner, introduced an approximated Coulomb
hole correction directly in the electron–electron interaction
in a recently written SCF computer codes. Since the main
theoretical frame remained the HF frame, and since the Cou-
lomb hole correction was included in the Fock operator, there
seemed no need to call the Slater determinant and the orbi-
tals differently from what previously called. In the deriva-
tion of the integral matrix elements related to the Coulomb
hole correction a semi-empirical parameterization was adop-
ted (relating to the electronic density via the overlap integral
variables). A lengthy review paper dealing with the emer-
ging computational chemistry for atom and molecules, inclu-
ding Coulomb hole correction and relativistic correction, was
written; by early February 1964 the work with the Hartree–
Fock Coulomb–hole corrected wavefunction and energies for
the atoms from He to Ar was accepted by the IBM Journal of
Research and Development [30] but the publication was long
delayed, since the appendix of the review is the very leng-
thy publication of Clementi’s Tables of Atomic Functions
[31] (later the tables were extended in the Atomic Tables
by Clementi and Roetti [101]). The Coulomb hole propo-
sal and results were also presented in 1964 at international
[102,103] and local meetings (like at Brueckner’s group in

La Jolla, CA, USA). The message was that the correlation
correction can be included as a correction to be performed at
the same time we compute the HF wavefunction, leading not
only to an accurate energy but also to a new easily obtained
function.

Alternative to this approach are (a) the density functionals
described in Gombas volumes, unknown in the early sixties to
one of us (E.C.) and (b) the “Slater exchange” formulations,
started as a pragmatic simplification for solid state compu-
tation, adopted for example in the atomic computation by
Hermann and Skillman [43]. Slater’s work made clear a com-
plementary message, namely that variation in the exchange
parameterization could lead to lower energy, which could be
made to agree with exact energies [42]. We recall that also
the xα approach, at times publicized the doom of the HF
model, prompted one of us (E.C.) with an invitation to act
constructively rather than destructively [104]. Clementi and
Slater’s approach are complementary: in the HF model the
electrons have an exaggerated Coulomb repulsion, which can
be corrected either by decreasing the Coulomb integrals or
by increasing the exchange integrals.

To avoid semantic confusions, we have designated as
“density functional approximation”, DFA, Wigner’s and
Clementi‘s path attempting to estimate as closely as feasible
the correlation energy via semi-empirical functionals in HF
computations. In the past 40 years there were several new
DFA proposals [56–59] some with the correlation corrections
not limited to the electron–electron and the kinetic energy
but extended also to the electron-nuclear interaction [41],
or extending the DFA approach to relativistic functions [62]
or, finally, not using HF wave functions but short MC–HF
expansions [60,61]. A number of DFA density functionals
tested and collected trough the early 1990s are documented
in [105], and implemented in the HF–HL computer code.

Figure 8 deals with the origins of the HF–HL method,
from the beginning of quantum chemistry with the MO and
HL proposals up to the present time. Most likely there will
be methodological extensions based on others “old” concepts
like natural orbitals [106–109], NO, and different orbitals for
different spins [110]. The HF–HL basic mathematical struc-
ture is the variational addition of two determinantal wave
functions, the HF and the HL. However, the two determi-
nants can be contracted into one yielding a new determinantal
function, the “compact-HF–HL” wavefunction, C–HF–HL.
Indeed, for example in a diatomic molecule AB, the space
part of the molecular orbital can be constructed by a variatio-
nal addition of a traditional MO (available from the HF com-
ponent of the HF–HL function) and either the atomic orbital
AOA on atom A, or the atomic orbital AOB on atom B (avai-
lable from the HL component of the HF–HL function). For
example in H2, starting with the usual canonical MO, 1σg,
and the two canonical AOs, 1sA and 1sB, one might attempt
to construct a C–HF–HL wave function from the two new
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molecular orbitals (c11σg + c21sA)α and (c11σg + c21sB)β;
the 1σg, 1sA and 1sB can be obtained, as starting approxima-
tion, from the HF–HL optimized wavefunction with c1 and
c2 are new variational coefficients.

Therefore, to the canonical HF molecular orbitals there
correspond two non-orthogonal and different molecular orbi-
tals, each one with its own spin function. In this way the
C–HF–HL wavefunction would be constructed with “dif-
ferent orbitals for different spins”, a well-known algorithm
to introduce correlation corrections. Note that this construc-
tion explains also the gain obtained with the use of ionic
structures. Indeed, the matrix elements for the C–HF–HL
function include the equivalent of those derived for ionic
structures in the HF–HL model. The build up principle for
the C–HF–HL function can be taken directly from Herzberg’s
orbital diagrams [6], connecting the united atom orbital, to
the molecular orbitals at equilibrium separation and to the
atomic orbitals at dissociation.

9 Conclusions

We have discussed on a new variational computational
method, the Hartree–Fock–Heitler–London, and compared
Hartree–Fock, Heitler–London, and Hartree–Fock–Heitler–
London potential energy curves for the first and second period
hydrides and homonuclear molecules. We recall that neither
the HF nor the HL approximation are capable of systemati-
cally reproducing, at least qualitatively, the basic molecular
binding features known experimentally (bond breaking and
bond formation). Further, the HF model breaks down at disso-
ciation preventing any assessment of the correlation correc-
tion for internuclear separations larger than about twice the
equilibrium distance. The two traditional methods, however,
have the high merits of mathematical simplicity and imme-
diate physical interpretability, and, because of these two basic
qualities, have historically provided two distinct and compe-
ting quantum chemical “reference” wavefunctions for theo-
retical and computational chemistry and are at the origin of
the most basic concepts in physical chemistry and in chemical
physics.

The HF-HL method variationally merges the two histori-
cal paths, at a marginal increase in computational complexity,
retaining at the same time the physical interpretability of
the two original contributions. The combination of the two
methods into the HF–HL approach eliminates grossly unphy-
sical approximations, particularly at large internuclear sepa-
rations, accounts for non-dynamical correlation and state
crossing and predicts molecular binding more reliably.

The post-HF–HL is carried out either ab initio or within
the density functional approximations, DFA. For few elec-
tron diatomic molecules, H2, HeH, LiH, and BeH, we have
computed ab initio the total correlation with rather extended

MC–HF and MC–HL expansions leading to good agreement
with experimental binding and total non- relativistic energies.
More importantly, however, we have shown for the first and
second period diatomic hydrides and homopolar molecules,
that the molecular extra correlation energy can be essentially
accounted for with the computation of only a few HF–HL ab
initio configurations, thus yielding very reasonable binding
energies.

The post-HF–HL computations with DFA, for example
with the Coulomb hole functional, yield in a simple way
accurate molecular binding and total energies, both at equili-
brium and at dissociation. Work is in progress to test a variety
of different density functionals [70,71].

In summary, the HF–HL approach provides (1) a reliable
“zero-order reference wavefunction” while maintaining
mathematical simplicity and immediate physical interpreta-
bility, (2) the computation of the molecular extra correla-
tion energy points to the possibility to obtain ab initio very
reasonable binding energies with much shorter expansions
than today general assumed, (3) the computation with DFA
of post-HF–HL functions and energies remains a pragmatic
answer for large chemical systems, (4) since the ab initio
HF–HL method can account for an increasingly large frac-
tion of the dynamical correlation, we expect that eventually
the DFA approach will become a simple numerical list of
empirical rules for numerical corrections of the smaller and
smaller errors present in the ab initio functions.

We are now planning to extend the HF–HL approach to
polyatomic systems, where likely the main drawback will be
not the computation of the dynamical correlation but rather
the optimization of the HL component; availability of Slater
four center integral codes [111], will allow to replace the
Gaussian basis sets and simplify the optimization effort.

Acknowledgment One of us (G.C.) acknowledges a grant from MIUR-
2004034838.

Appendix: Comment on the Coulomb hole and electron
pairs

As we all know, the computation of the non-relativistic
electronic correlation energy, Ec, is the aim of any post-
Hartree–Fock approach. In this appendix, we recall early
considerations, which relate the Coulomb hole approxima-
tion, the HF model and the exact non-relativistic energies.
To start with, the relations between the exact non-relativistic
energy and the HF energy can be elucidated (considering for
simplicity closed shell structures) by writing

EHF = �hi + �i�j(2Jij − Kij) (1A)

Eexact = �hi + �i�j(2Jij − Kij) + Ec (2A)
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with both equations obeying the virial theorem. To explicitly
connect Eqs. 1A and 2A, the correlation energy, Ec, a rela-
tively small perturbation, can be represented as a term by
term correction for the HF energy components in Eq. 1A;
therefore we write the correlation energy as

Ec = �i�hi + �i�j(2�Jij − �Kij) (3A)

yielding

Eexact = �ihi + �i�j(2Jij − Kij) (4A)

with

hi = hi + �hi (5A)

Jij = Jji + �Jij (6A)

Kij = Kij + �Kij (7A)

In this way the exact electronic energy, Eq. 4A, retains
the structure of the HF energy expression, with corrections
in each one of the HF terms [41]. Clearly, there is no pro-
blem in defining an exchange energy, since the overall frame-
work is spin dependent and follows the HF model. With the
Coulomb hole we correct the electron–electron interactions,
as shown in Eqs. 6A and 7A; due to the SCF algorithm this
brings about new spin–orbitals (different from the HF orbi-
tals) leading also to Eq. 5A. The potential energy curves and
the binding energies in Figs. 4 and 5 are once more a grati-
fying verification of this approach.

Eq. 3A can be formally re-written by collecting terms
depending on one orbital and those on two orbitals, namely
inter- and intra-pair correlation energies:

Ec = �jeii + �i�j �=ieij (8A)

This equation reminds us of Eq. 7 in Sect. 3.1, with a decom-
position among atoms rather than among orbitals. These
two different, but equivalent, decompositions are once more
consequences of the two view points, MO for Eq. 8A and
VB for Eq. 7. Stressing the VB perspective with Eq. 7 we are
lead to “structures”, stressing the MO picture with Eq. 8A
we are lead to configuration mixing.

The Coulomb hole proposal and its application to atomic
systems [30,32–34] are the first quantum chemistry example
where Eexact is approximated via modified HF matrix ele-
ments yielding the “Clementi orbitals”. Extending Wigner’s
concept, related to a radius rs(i) for electron i with spin up,
delimiting a space region impermeable to electron j with
spin down and its associated radius rs(j), the Ch functional
[30] modifies the standard Hartree–Fock Coulomb matrix
elements between electrons i and j . In the computation of
the Coulomb integrals, the integration from 0 to infinity over
the radial coordinates r (i) and r (j) is modified at r(i) = r(j),
where the two electrons are sharply kept apart in an interval
from ra = (r(i) − δ/2) to rb = (r(i) + δ/2), where δ is a
semi-empirical parameter density dependent, approximating

the coulomb hole [30]. The new Coulomb interaction matrix
element is therefore computed as

∞∫

0

f (i)

⎡

⎣
ra∫

0

f ′( j)dr( j) +
∞∫

rb

f ′′( j)dr( j)

⎤

⎦dr(i) (9A)

where f (i), f ′( j), f ′′( j) are standard expressions related
to the orbital basis set representation for electrons i and j ,
respectively. Note that the above integration over the radial
part of the basis set functions is performed independently
from the integration over the orbital angular part, thus δ must
be parameterized for specific combinations of s, p, d, f, . . .

functions. The above cut off is “hard”, thus the expression in
Eq. 9A is designated as the “hard Coulomb hole”.

Later the original “hard Coulomb hole” was modified into
“a soft Coulomb hole” [56] by replacing the Coulomb ope-

rator [1/ri j ] with the operator
[
1 − exp(−αr2

i j )
]
/ri j . The

value of α, a semi-empirical density dependent value, is
determined by fitting atomic energies and ionization poten-
tials for specific combinations of s, p, d, f, . . . functions.

In the Ch functional the dependency on the electronic
density is indirect since the parameters for δ or α are fit-
ted using the variables present in the basis set (namely, orbi-
tal exponents, angular symmetry and overlap of the basis
functions). However, the obtained parameterization has been
proved to be essentially basis set independent [58], particu-
larly for large basis sets; indeed it hardly would makes sense
to compute post-HF energies with basis set not adequate to
yield energies of near-HF limit quality.

Next, recalling Hylleraas [112], we note that the old
stumbling block, namely the availability of many-center
many-electron integrals has been partially removed [113,
114], allowing progress toward many electron system com-
putations. However, the proposal cannot be realistically
considered for large molecular systems. In this context, we
note that the soft Coulomb hole functional correction [56,
58] is related to Hylleraas proposal. Indeed, since the soft
Coulomb hole correction replaces the 1/r12 operator with
one of the form F = [

1 − exp(−αr2
12)

]
/r12 the correspon-

ding Coulomb matrix elements over orbitals ϕ are:
〈
ϕi(1)ϕj(2)|F |ϕk(1)ϕl(2)

〉 = Jijkl − J′
ijkl, (10A)

with

Jijkl = 〈
ϕi(1)ϕj(2)|1/r12|ϕk(1)ϕl(2)

〉
(11A)

J′
ijkl =

〈
ϕi(1)ϕj(2)|exp − (αr2

12)/r12|ϕk(1)ϕl(2)
〉

(12A)

with α semi-empirical parameter density related. Note that
Eq. 12A can lead to quantities like
〈
exp−(α′r12)(ϕi(1)ϕj(2)|1/r12|(ϕk(1)ϕl(2)exp − (α′r12)

〉

(13A)
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namely, a Hylleraas-type term. The analytical expression for
the computation of the integrals of Eq. 13A are available in
[115].

Note added in proof: The HF-HL computer code, written
by one of us (GC) and summarized in Sect. 2.1, is presently
extended by including gradient techniques for the optimi-
zation of the coefficients of the orbital expansions. In addi-
tion, the new version of the code has the option to use either
Gaussian or Slater-type functions. These extensive modifi-
cations have been made during a stay at the Universidad
Autonoma of Madrid, Spain, in the Department of Chemistry
under the guidance of Prof. Jaime Fernandez Rico.
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